你可能不知道,又有一篇强调大数据好处的重量级报告问世了。谷歌、脸谱网和易趣网等科技巨头都把定制、免费、授权使用的各种技术进行了组合使用,通过结合免费的大数据将内部数据资产进行变现。现在的时代里,最普通的人对大数据也有话要说!
但是,如何组织实施解决方案,使企业能够处理大量数据、释放出大数据的潜能呢?
让大数据为你服务,你需要做些什么
道阻且长
Long Road Ahead
通常来说,企业高管都会迅速地批准使用大量资金用于大数据平台建立。很多企业很快就意识到,他们需要利用分析技术,让这些数据具有意义。
一些组织开展了“敏捷”计划。它可能有一个平台,将Hadoop用于部分分布式存储,另有一些数据结构处理机器学习和实时流媒体,如Apache Spark,还有许多其他不同的运行部件。
结果呢?在一两年的时间、数百万美元的投入后,一个可行的大数据平台终于问世了。
但不幸的是,这些大数据平台太少、来得太晚了。为什么呢?这些组织已经失去了关键的时间和资源,他们把优势拱手让给了采取了不同策略的竞争对手。
携手大数据分析共同奋进
Run With Big Data Analytics
那些成功的企业采取的是与众不同的策略和方法,他们让基础设施跟上成功试点项目的需要。最重要的是,这种方法确保了用大数据平台所支持的分析技术来保证对大数据平台的投资。
那么现在在实际工作中应该如何操作呢?和运营分析的方式很相近,只是我们将把大数据与运营数据进行结合!
四步走战略
The Four-Step Approach
1. 找到拥有强大商业案例支持并需要外部大数据资源的试点项目。比如说,你可能想看看,利用和公司有关的微博是不是能发现什么可用的洞察。那么你就可以尝试开展一个利用语义分析的项目,来了解微博的主题、发现客户是否对公司业务含有积极或消极的情绪等。
2. 把这些项目按照商业价值和实施难度进行排序。刚开始的成功将作为证据支持,帮助您在组织内构建出需要的技能和资源,应对更大、更困难的分析任务。
3. 通过简短有效的测试评价大数据技术。如果企业内部有专业人士,那么这个测试就可以在企业内部进行,或者也可以寻找外部咨询的服务,专注于找到最有可能成功、最能提供商业价值的分析项目。
4. 持续几轮的探索、排序、测试流程。这个过程给你时间去了解企业的大数据需求是什么,并为最终提供一个“适用的”大数据技术平台提供有价值的观察。
更多优点
Need More Convincing?
令人惊讶的是,这种革新性的方法不需要花上两年来先部署一个大数据分析平台却不能同时为企业创造效益。相反地,在整个过程中组织没有任何时刻会忽略它的运营分析需要。
它甚至还有一个附加的优点,它提供了在组织中拥抱和融入“大数据思维”的时间。这是一个慢慢完成的过程,你不能期望组织一夜之间就具备分析数据还能利用见解的能力,这个过程是有组织有计划地逐渐进步的。
显然,这才是大数据项目的正确打开方式!!